LTE, an acronym for Long Term Evolution, commonly marketed as 4G LTE, is a standard for wireless communication of high-speed data for mobile phones and data terminals. It is based on the GSM/EDGE and UMTS/HSPA network technologies, increasing the capacity and speed using a different radio interface together with core network improvements. The standard is developed by the 3GPP (3rd Generation Partnership Project) and is specified in its Release 8 document series, with minor enhancements described in Release 9.
The world's first publicly available LTE service was launched by TeliaSonera in Stockholm and Oslo on December 14, 2009. LTE is the natural upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks such as Verizon Wireless, which launched the first large-scale LTE network in North America in 2010, and au by KDDI in Japan have announced they will migrate to LTE. Airtel launched the LTE service in India in April 2012. LTE is, therefore, anticipated to become the first truly global mobile phone standard, although the different LTE frequencies and bands used in different countries will mean that only multi-band phones will be able to use LTE in all countries where it is supported.
Although marketed as a 4G wireless service, LTE (as specified in the 3GPP Release 8 and 9 document series) does not satisfy the technical requirements the 3GPP consortium has adopted for its new standard generation, and which were originally set forth by the ITU-R organization in its IMT-Advanced specification. However, due to marketing pressures and the significant advancements that WIMAX, HSPA+ and LTE bring to the original 3G technologies, ITU later decided that LTE together with the aforementioned technologies can be called 4G technologies.The LTE Advanced standard formally satisfies the ITU-R requirements to be considered IMT-Advanced.And to differentiate LTE Advanced and WiMAX-Advanced from current 4G technologies, ITU has defined them as "True 4G".
LTE is a standard for wireless data communications technology and an evolution of the GSM/UMTS standards. The goal of LTE was to increase the capacity and speed of wireless data networks using new DSP (digital signal processing) techniques and modulations that were developed around the turn of the millennium. A further goal was the redesign and simplification of the network architecture to an IP-based system with significantly reduced transfer latency compared to the 3G architecture. The LTE wireless interface is incompatible with 2G and 3G networks, so that it must be operated on a separate wireless spectrum.
LTE was first proposed by NTT DoCoMo of Japan in 2004, and studies on the new standard officially commenced in 2005. In May 2007, the LTE/SAE Trial Initiative (LSTI) alliance was founded as a global collaboration between vendors and operators with the goal of verifying and promoting the new standard in order to ensure the global introduction of the technology as quickly as possible.The LTE standard was finalized in December 2008, and the first publicly available LTE service was launched by TeliaSonera in Oslo and Stockholm on December 14, 2009 as a data connection with a USB modem. The LTE services were launched by major North American carriers as well, with the Samsung SCH-r900 being the world’s first LTE Mobile phone starting on September 21, 2010 and Samsung Galaxy Indulge being the world’s first LTE smartphone starting on February 10, 2011both offered by MetroPCS and HTC ThunderBolt offered by Verizon starting on March 17 being the second LTE smartphone to be sold commercially. In Canada, Rogers Wireless was the first to launch LTE network on July 7, 2011 offering the Sierra Wireless AirCard® 313U USB mobile broadband modem, known as the "LTE Rocket™ stick" then followed closely by mobile devices from both HTC and Samsung.Initially, CDMA operators planned to upgrade to rival standards called UMB and WiMAX, but all the major CDMA operators (such as Verizon, Sprint and MetroPCS in the United States, Bell and Telus in Canada, au by KDDI in Japan, SK Telecom in South Korea and China Telecom/China Unicom in China) have announced that they intend to migrate to LTE after all. The evolution of LTE is LTE Advanced, which was standardized in March 2011. Services are expected to commence in 2013.
The LTE specification provides downlink peak rates of 300 Mbit/s, uplink peak rates of 75 Mbit/s and QoS provisions permitting a transfer latency of less than 5 ms in the radio access network. LTE has the ability to manage fast-moving mobiles and supports multi-cast and broadcast streams. LTE supports scalable carrier bandwidths, from 1.4 MHz to 20 MHz and supports both frequency division duplexing (FDD) and time-division duplexing (TDD). The IP-based network architecture, called the Evolved Packet Core (EPC) and designed to replace the GPRS Core Network, supports seamless handovers for both voice and data to cell towers with older network technology such as GSM, UMTS and CDMA2000. The simpler architecture results in lower operating costs (for example, each E-UTRA cell will support up to four times the data and voice capacity supported by HSPA).
Copyright ©2013-2017 Shenzhen Coshic Electronics CO., LTD. All rights reserved.
深圳市科启电子科技有限公司版权所有
粤ICP备14004416号